Evaluation of 188Re-labeled PEGylated nanoliposome as a radionuclide therapeutic agent in an orthotopic glioma-bearing rat model

نویسندگان

  • Feng-Yun J Huang
  • Te-Wei Lee
  • Chih-Hsien Chang
  • Liang-Cheng Chen
  • Wei-Hsin Hsu
  • Chien-Wen Chang
  • Jem-Mau Lo
چکیده

PURPOSE In this study, the (188)Re-labeled PEGylated nanoliposome ((188)Re-liposome) was prepared and evaluated as a therapeutic agent for glioma. MATERIALS AND METHODS The reporter cell line, F98(luc) was prepared via Lentivector expression kit system and used to set up the orthotopic glioma-bearing rat model for non-invasive bioluminescent imaging. The maximum tolerated dose applicable in Fischer344 rats was explored via body weight monitoring of the rats after single intravenous injection of (188)Re-liposome with varying dosages before the treatment study. The OLINDA/EXM 1.1 software was utilized for estimating the radiation dosimetry. To assess the therapeutic efficacy, tumor-bearing rats were intravenously administered (188)Re-liposome or normal saline followed by monitoring of the tumor growth and animal survival time. In addition, the histopathological examinations of tumors were conducted on the (188)Re-liposome-treated rats. RESULTS By using bioluminescent imaging, the well-established reporter cell line (F98(luc)) showed a high relationship between cell number and its bioluminescent intensity (R(2)=0.99) in vitro; furthermore, it could also provide clear tumor imaging for monitoring tumor growth in vivo. The maximum tolerated dose of (188)Re-liposome in Fischer344 rats was estimated to be 333 MBq. According to the dosimetry results, higher equivalent doses were observed in spleen and kidneys while very less were in normal brain, red marrow, and thyroid. For therapeutic efficacy study, the progression of tumor growth in terms of tumor volume and/or tumor weight was significantly slower for the (188)Re-liposome-treated group than the control group (P<0.05). As a result, the lifespan of glioma-bearing rats treated with (188)Re-liposome was prolonged 10.67% compared to the control group. CONCLUSION The radiotherapeutic evaluation by dosimetry and survival studies have demonstrated that passive targeting (188)Re-liposome via systemic administration can significantly prolong the lifespan of orthotopic glioma-bearing rats while maintaining reasonable systemic radiation safety. Therefore, (188)Re-liposome could be a potential therapeutic agent for glioblastoma multiforme treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pegylated nanoliposome as a radionuclide therapeutic agent in an orthotopic glioma-bearing rat model

License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be f...

متن کامل

nanoliposome as a radionuclide therapeutic agent in an orthotopic glioma-bearing rat model

License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be f...

متن کامل

Comparison of the therapeutic efficacy of 188Rhenium-liposomes and liposomal doxorubicin in a 4T1 murine orthotopic breast cancer model.

Liposomal doxorubicin (Lipo-DOX) has been widely and successfully used in chemotherapy for breast cancer patients. Since our previous studies found that 188Rhenium (188Re)-N,N-bis (2-mercaptoethyl)-N',N'-diethy-lethylenediamine (BMEDA)-labeled pegylated liposomes (188Re-liposomes) have radiotherapeutic potential in a colon cancer model, and little information is available to make a comparison o...

متن کامل

Radiosynthesis of 191Os-2-acetylpyridine thiosemicarbazone complex, as an in vivo therapeutic radionuclide generator

Introduction: Due to the anti-proliferative properties of platinum group-thiosemicarbazone complexes, the production of 191Os-labeled 2-acetyl pyridine 4-N-methylthiosemicarbazone (191Os-APMTS) was investigated. Methods: [191Osmium (T½= 15.4d) was produced via the 190Os(n,γ)191Os nuclear reaction using enriched target irradiated...

متن کامل

Intratumoral Injection of 188Re labeled Cationic Polyethylenimine Conjugates: A Preliminary Report

188Re (Rhenium) is easily obtained from an in-house 188W/188Re generator that is similar to the current 99Mo/99mTc generator, making it very convenient for clinical use. This characteristic makes this radionuclide a promising candidate as a therapeutic agent. Polyethylenimine (PEI) is a cationic polymer and has been used as a gene delivery vector. Positively charged materials interact with cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015